The spectral dependence of facular contrast and solar irradiance variations

نویسندگان

  • Y. C. Unruh
  • S. K. Solanki
چکیده

We present model calculations of facular and sunspot contrasts as a function of wavelength and limb angle on the Sun. These are the first such calculations; they assume LTE and are based on opacity distribution functions (ODFs). The calculated facular contrasts as a function of limb angle fit into the general picture of contrast measurements, and the behaviour of the contrast with wavelength at a given limb angle is in excellent agreement with the measurements. The calculated intensity spectra are used to construct the solar flux spectrum for different levels of solar activity. It is assumed that the irradiance or flux variations are due to changes in the sunspot and facular filling factors. The model atmosphere used to calculate the facular intensities has been tuned so that the calculated irradiance variations match the observed total and spectral irradiance variations during the last solar cycles. The model calculations have also been used to estimate the relative importance of continuum and spectral-line variations in producing irradiance variations. The results suggest that the continuum variations only contribute negligibly to the total irradiance variations on solar-cycle time scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model of the wavelength dependence of solar irradiance variations

The variation of the solar irradiance over the solar cycle has a strong wavelength dependence, being larger at shorter wavelengths. Here we present simple models of the spectral dependence of irradiance variations between solar activity maximum and minimum. We find that the observations (which concentrate on the UV) cannot be reproduced by a change in effective temperature of the Sun (or of par...

متن کامل

Modelling irradiance variations from the surface distribution of the solar magnetic field

An important question in solar physics is to what extent solar surface magnetism affects the solar irradiance. Previous attempts to answer this question have employed proxies of the magnetic field to reconstruct the irradiance and compare it with observations. Here we present the first model calculations of solar irradiance variations based on variations of the surface distribution of the solar...

متن کامل

A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals

A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun ...

متن کامل

Long-term behavior of emission from solar faculae: steps towards a robust index

Facular emission is one of the major contributors to long-term solar irradiance variations. Reconstructions of past facular variations, however, are strongly hampered by the lack of reliable proxies, particularly on time-scales longer than a solar cycle. We consider the five potential facular proxies with records covering more than 40 years. By suitably weighting and combining them we create a ...

متن کامل

Spectral irradiance variations: Comparison between observations and the SATIRE model on solar rotation time scales

Aims. We test the reliability of the observed and calculated spectral irradiance variations between 200 and 1600 nm over a time span of three solar rotations in 2004. Methods. We compare our model calculations to spectral irradiance observations taken with SORCE/SIM, SoHO/VIRGO and UARS/SUSIM. The calculations assume LTE and are based on the SATIRE (Spectral And Total Irradiance REconstruction)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999